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Abstract. The nonlinear evolution of the kink instability of a plasma with an elliptic magnetic stagna-
tion line is studied by means of an amplitude expansion of the ideal magnetohydrodynamic equations.
Wahlberg et al. [12] have shown that, near marginal stability, the nonlinear evolution of the stability can
be described in terms of a two-dimensional potential U(X, Y ), where X and Y represent the amplitudes of
the perturbations with positive and negative helical polarization. The potential U(X, Y ) is found to be non-
linearly stabilizing for all values of the polarization. In our paper a Lagrangian and an invariant variational
principle for two coupled nonlinear ordinal differential equations describing the nonlinear evolution of the
stagnation line instability with arbitrary polarization are given. Using a trial function in a rectangular box
we find the functional integral. The general case for the two box potential can be obtained on the basis of
a different ansatz where we approximate the Jost function by polynomials of order n instead of a piecewise
linear function. An example for the second order is given to illustrate the general case. Some considerations
concerning solar filaments and filament bands (circular or straight) are indicated as possible applications
besides laboratory experiments with cusp geometry corresponding to quadripolar cusp geometries for some
clouds and thunderstorms.

PACS. 02.30.Xx Calculus of variations – 52.25.Xz Magnetized plasmas – 52.55.-s Magnetic confinement
and equilibrium

1 Introduction

In order to understand the anomalous plasma stability
observed in various fusion devices based on the Z-pinch,
such as for instance the Extrap configuration, the dense
Z-pinch, and the fiber pinch, it is necessary to extend the
theory of the internal m = 1 (kink) instability beyond the
stabilizing assumptions of the linear, ideal magnetohydro-
dynamic (MHD) model [1–6]. It is well-known that such
plasma is unstable within ideal MHD theory [4,5,7,8].
Furthermore, two important properties of the eigenmodes
of this instability are that (i) they are localized arbitrarily
close to the stagnation line (the stagnation line in a mag-
netized plasma is a line along which the magnetic field
vanishes) in the limit of short axial wavelengths, and (ii)
they involve a displacement, or kinking, of the stagnation
line [7,8]. The instability can therefore, in a sense, be re-
garded as a property of the stagnation line itself.

In general, the nonlinear evolution (NLE) of the kink
instability of plasma with an elliptic magnetic stagnation
line (EMSL) is studied by means of an amplitude expan-
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sion of an ideal MHD equations. Cylindrically symmetric
plasma with circular field lines is used to model the mag-
netic field geometry close to the stagnation line. Due to
the symmetry with respect to ±z, the linear stability prob-
lem of such a system has a two-folded degeneracy, with
equal eigenvalues for helical kink perturbations with pos-
itive and negative polarization. Wahlberg et al. in a series
of papers [8–12] have shown that, near marginal stability,
the NLE of the instability can be described in terms of a
two-dimensional potential U(X, Y ), where X and Y rep-
resent the amplitudes of the perturbations with positive
and negative helical polarization. They obtained the NLE
of the stagnation line instability with either positive or
negative helical polarization, they constructed the energy
K + U = constant, where K is the kinetic energy, and U
the potential energy for the specific physics at hand and
they discussed the stability from the energy integral.

We started on one hand from the evolution equa-
tion (EE) obtained in [12] and on the other hand from
the existence of a Lagrangian and an invariant variational
principle (IVP) (i.e. in the sense of the inverse prob-
lem of calculus of variations (CV) through deriving the
functional integral (FI) corresponding to given coupled
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nonlinear ordinal differential equations (CNLODEs). The
obtained results turned out to be in agreement with those
ones given in [13–21]. Moreover, the first and the second
variations of the obtained FI (i.e. direct problem of the
CV) are also carried out and led again to be an extension
of the results of the stability criteria given in Wahlberg
et al. [8–12] to include the bistable systems (including
nonlinearity and solitons) [12]. The invariance identities
involving the Lagrangian L and the generators of the in-
finitesimal Lie group of transformations will be utilized
for writing down their first integrals via Noether’s theo-
rem (Logan [23,24]). We formulate a variational principle
(VP) for the CNLODEs describing the NLE of stagnation
line instability. We shall demonstrate the simplest example
of the application of this technique, taking the box-shaped
initial pulse and a Jost functions.

This paper is organized as follows: in Section 2, a brief
outline is given of the linear stability properties of the
EMSL model in incompressible, ideal MHD. Some gen-
eral properties of the equations describing the nonlinear
dynamics of the stagnation line are discussed. The exis-
tence and formulation of the variational principle (VP)
for the resulting nonlinear evolution equation (NLEE).
The invariance identities [22] involving the Lagrangian L
and the generators of the infinitesimal Lie group of trans-
formations have been used to obtain the first integrals
via Noether’s theorem [13–21,23,24]. Further, through the
repeated application of invariance under the transforma-
tion, the exact solution of the EE, which has been gen-
erated for various choices of the parameters involved, is
given. In Section 3, we formulate the VP for the two
CNLODEs describing the NLE of stagnation line insta-
bility and we construct the Lagrangian L [25–28]. In
Section 4, we demonstrate the simplest example of the ap-
plication of this technique, taking the box-shaped initial
pulse and an ansatz based on a linear Jost function in the
region of localization of the box. In Section 5, we consider
in more details the limiting case of the above mentioned
box with the phase jump equal to π, i.e., a combination
of two boxes of opposite signs, the total area of the initial
pulse being thus zero. We develop a variational approxi-
mation for finding the eigenvalues of this pulse, the Jost
function being approximated by a piecewise linear ansatz,
which has two variational parameters. In Section 6, we
approximate the Jost functions by polynomials of order n
instead of piecewise linear functions. Section 7 indicates
the possibility of an application to some solar filaments.
Finally the paper ends with a conclusion in Section 8.

2 Solution of linear theory

We first discuss the general structure of the NLE of the
linearly unstable internal m = 1 kink modes in a pure
Z-pinch. As shown in a number of previous studies of
nonlinear, ideal MHD phenomena, the nonlinear dynam-
ics of a nearly marginal, nonresonant mode is in general
described by an equation of the type [8–12,28,29]

d2X

dτ2
+ D1X + D3X

3 = 0, (1)

where X(t) stands for some suitable quantity representing
the amplitude of the mode X(t) cos(ϕ + kz). Thus X(t)
denotes the amplitude of the plasma helix (normalized
to the plasma radius). k ≈ kc with kc the critical wave
number at the marginal point.

The linear dispersion relation (ω2 = D1 for the mode
m = 1) is obtained for D3 = 0. To see the influence of the
nonlinear term D3X

3 it is important to have a clear idea
of the ordering of the quantities. Using the symbol δ to de-
note the order of the mode amplitude X , the time scale τ
in this equation is proportional to τ = δt. Furthermore,
D1, the linear dispersion function of the nearly marginal
m = 1 kink mode, is of order δ2, which in terms of the
wave number means that k − kc = O(δ2). D3 = D3(kc)
is a number of order unity which determines the nonlin-
ear properties of the mode. If D3 is positive, the nonlin-
ear term stabilizes an unstable (D1 < 0) mode at a finite
amplitude, whereas a negative value of D3 implies that
the mode grows explosively in the nonlinear regime. The
quantities D1(kc) and D3(kc) may be calculated within
incompressible ideal MHD [12], using the helical equilib-
rium model developed in reference [9]. For illustrations we
shall use D1 = −1 and D3 = 1.5.

We discuss the IVP for equation (1) and we find the
exact solution. Now the existence of the VP is proved as
follows: consider

N(τ, X, X ′, X ′′) =
d2X

dτ2
+ D1X + D3X

3 = 0. (2)

The shape of this equation is clear: without the term in
X3, it corresponds to the linearized dispersion relation
(d2/dτ2 → ω2). Extending it to the nonlinear analysis we
have no term in X2 as we are near an extremum. The
next nonlinear term is in X3. For any nonlinear operator
N(X) of the form given above to be a potential operator, it
must satisfy the consistency condition [24]. The FI J(X)
for equation (1) can be written down using the formula
given by Tonti [25,26], and choosing the boundary on X ′
to be such that the boundary terms vanish, we get the FI
in the form

J(X) =
∫

1
2

[
−X ′2 + D1X

2 +
1
2
D3X

4

]
dτ. (3)

Thus the Lagrangian L, leading to equation (1), is
given by:

L =
1
2

[
−X ′2 + D1X

2 +
1
2
D3X

4

]
. (4)

For which the Euler-Lagrange equation as

∂L

∂X
=

d

dτ

(
∂L

∂X ′

)
, (5)

Equation (5) yields us equation (1). In order to prove the
invariance of the fundamental FI

(∫
Ldτ

)
, we look for a

one-parameter infinitesimal group of transformations of
the form:

τ = τ + εβ (τ, X) + o
(
ε2
)
,

X = X + εγ (τ, X) + o
(
ε2
)
. (6)
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The necessary condition for the fundamental FI
(∫

Ldτ
)

to be invariant under the one-parameter infinitesimal
group of transformation (6) is given by [27]:

β
∂L

∂τ
+ γ

∂L

∂X
+

∂L

∂X ′

[
∂γ

∂τ
+
(

∂γ

∂X
− ∂β

∂τ

)
X ′ − ∂β

∂X
X ′2
]

+ L

[
∂β

∂τ
+

∂β

∂X
X ′
]

= 0. (7)

On substituting for L and its derivatives in equation (7)
and collecting in descending order the coefficients of var-
ious powers of X ′ and setting these coefficients equal to
zero, we obtain:

∂β

∂X
= 0;

∂γ

∂τ
= 0;

∂γ

∂X
− 1

2
∂β

∂τ
= 0;

(
D1X + D3X

3
)
γ +

1
4
(
2D1X

2 + D3X
4
) ∂β

∂τ
= 0. (8)

On solving the system of equations (8), we get the follow-
ing expressions for β and γ:

β = c1 and γ = 0,

where c1 is an arbitrary constant. Thus, the one-parameter
infinitesimal group of transformation (6) takes the form:

τ = τ + εc1 + o
(
ε2
)
, X = X + o

(
ε2
)
. (9)

The solution for X of equation (1) is found by inverting
it to an elliptic integral as:

∫ X

X0

dX√
C′ + BX2 − X4

= ±
√

D3/2τ, (10)

where C′, B = −2D1/D3 are constants. (For the numeri-
cal values D1 = −1, D3 = 3/2, we have simply B = 2/3.)
Then the solution takes the form

X(τ) =
√

α1

[
1 −

(
1 − α1

α2

)
sn2

(√
D3/2τ, κ

)] 1
2

. (11)

where

κ =
√

α1 − α2

α1
, α1,2 =

B

2
±
√

B2

4
+ C′.

Furthermore, various choices of the values of the con-
stant C, may lead to many subclasses of equation (10),
e.g., if C′ −→ 0, α1 −→ B, α2 −→ 0, κ −→ 1. We get the
solution of equation (1) in the latter case as

X =
√

B sech
(√

D3B/2τ
)

. (12)

Figure 1 shows an example of U(τ), where U is given later
(Eq. (14)) with given values of the parameters in the in-
terval −1 < τ < 1. The solution (12) represents a bell
shaped stable soliton for given values of the parameters
as displayed in Figure 1.

Fig. 1. The nonlinear potential energy U(X) corresponding
to the parameters D1 = −1, D3 = 1.5, and C = 0.5 in the
interval [−1, 1] with equation (12).

3 Formulation of the variational principle

In the previous section, we saw that the linear problem is
indifferent to the sign of the axial wave number k. It is ob-
vious that, due to the symmetry of the configuration, this
must hold also for the coefficient of the nonlinear term D3

in equation (1). As a consequence, equation (1) describes
the NLE of the stagnation line instability with either pos-
itive or negative helical polarization. However, the most
general form of the linear eigenmode is a superposition of
all eigenmodes with the same eigenvalue, i.e. in this case
the eigenmodes with positive and negative helical polar-
ization. From now on we therefore consider a perturbation
of the form X(t) cos(ϕ + kz) + Y (t) cos(ϕ − kz). Except
for the possibility of mode rotation [9], this represents the
most general form of the linear m = 1 eigenmode in the
plasma configuration under consideration. If the ampli-
tudes X and Y in the expression above both are of order
δ, it follows that the nonlinear interaction between X and
Y produces a term proportional to XY 2 in equation (1).
Similarly, in the corresponding equation for the time evo-
lution of Y , a term involving Y X2 appears. Furthermore,
the coefficients in front of XY 2 and Y X2 have to be equal,
due to symmetry. This leads to the following CNLODEs
describing the NLE of stagnation line instability with ar-
bitrary polarization [12]

d2X

dτ2
+ D1X + D3X

3 + CXY 2 = 0,

d2Y

dτ2
+ D1Y + D3Y

3 + CY X2 = 0. (13)

As explained in relation to equation (2) we have no purely
quadratic terms. Hence the mixing of X and Y yields cubic
terms: a linear term in X affected by Y 2 in the equation
for X and vice versa for the equation in Y . The coefficient
C is, similarly to D3, a quantity of order unity, which may
be different for different marginal wave numbers of the in-
stability, C = C(kc). The components X (τ) and Y (τ) of
the Jost functions must be exactly equal to zero, respec-
tively, to the left and to the right of the support, in order
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Fig. 2. (Color online) The nonlinear potential energy U(X, Y )
corresponding to the parameters D1 = −1, D3 = 1.5, and
C = 0.5 in the interval [−1, 1] and [−1, 1] in equation (14).

to comply with the standard boundary condition for the
Jost functions at infinity for bound states. This is another
feature needs to be taken into account when choosing any
trial functions, as well as the obvious condition that the
Jost functions must be continuous. A similar technique
can be used in order to illustrate the properties of the
system (13). We notice in particular that the system has
an energy K+U = constant, where K and U stand for the
kinetic and the potential energy respectively, and given by

K =
1
2

(
X

d2X

dτ2
+ Y

d2Y

dτ2

)
;

U =
1
2
D1

(
X2 + Y 2

)
+

1
4
D3

(
X4 + Y 4

)
+

1
2
CX2Y 2.

(14)

The evolution of the system is then described by a particle
in a two-dimensional potential and the equation of motion
Rττ + ∇U = 0, with R(X, Y ). Figure 2 shows an exam-
ple of U(X, Y ), with the parameters D1 = −1, D3 = 1.5,
C = 0.5. Assuming that D1 < 0, i.e., that we are on the
unstable side of a marginal number kc. Then, the equilib-
rium point X = Y = U = 0 corresponds to a maximum of
U(X, Y ), as illustrated in Figure 2. Moreover, the first and
the second variations of the obtained FI (i.e. direct prob-
lem of the CV) are also carried out and led to the same
results of the stability criteria given in [12]. The condition
for nonlinear stability of the system is that U increases in
all directions in the XY -plane as |X | , |Y | → ∞. This is
the case if both D3 and C + D3 are positive. In this case,
the equilibrium point at the origin, have eight equilibrium
points in the XY -plane. Furthermore, these eight equilib-
ria can be grouped into two classes. In the first class, either
X or Y is zero, corresponding to helical polarization of the
equilibrium, whereas in the second class |X | = |Y |, cor-
responding to plane polarization of the equilibrium. One

example in the first class of equilibria is given by

X =
√

−D1

D3
, Y = 0, U = − D2

1

4D3
.

An example in the second class of equilibria is given by

X = Y =
√
− D1

C + D3
, U = − D2

1

2C + 2D3
.

It is obvious that either the equilibria in the first class are
stable and those in the second class unstable, or those in
the second class are stable and the equilibria in the first
class are unstable. For instance, the plane polarized equi-
libria in Figure 2 are stable, whereas the helically polarized
equilibria are unstable [12].

We discuss the existence of a Lagrangian and the IVP
for equation (13). In order to reduce equation (13) to a
system of CNLODEs, we express it in the following form:

N(X, Y ) =
d2X

dτ2
+ D1X + D3X

3 + CXY 2 = 0, (15)

M(X, Y ) =
d2Y

dτ2
+ D1Y + D3Y

3 + CY X2 = 0, (16)

where X = X (τ) and Y = Y (τ). The consistency condi-
tions are expressed as follows [13–21,25–28]

∂N

∂Xt
=

∂

∂t

(
∂N

∂Xtt

)
+

1
2

∂

∂τ

(
∂N

∂Xτt

)
,

∂M

∂X
=

∂N

∂Y
− ∂

∂τ

(
∂N

∂Yτ

)
− ∂

∂t

(
∂N

∂Yt

)
+

∂2

∂τ2

(
∂N

∂Yττ

)

+
∂2

∂τ∂t

(
∂N

∂Ytτ

)
+

∂2

∂t2

(
∂N

∂Ytt

)
,

∂M

∂Xτ
= − ∂N

∂Yτ
+ 2

∂

∂τ

(
∂N

∂Yττ

)
+

∂

∂t

(
∂N

∂Ytτ

)
,

∂M

∂Xt
= −∂N

∂Yt
+ 2

∂

∂t

(
∂N

∂Ytt

)
+

∂

∂τ

(
∂N

∂Yτt

)
,

∂M

∂Xτt
=

∂N

∂Ytτ
,

∂M

∂Xtt
=

∂N

∂Ytt
,

∂M

∂Yτ
=

∂

∂τ

(
∂M

∂Yττ

)
+

1
2

∂

∂t

(
∂M

∂Yτt

)
,

∂M

∂Xττ
=

∂N

∂Yττ
,

∂M

∂Yt
=

∂

∂t

(
∂M

∂Ytt

)
+

1
2

∂

∂τ

(
∂M

∂Yτt

)
.

(17)

Furthermore, if the system of equation (13) satisfies the
above conditions (17), then a FI J(X, Y ) can be written
down using the formula given by Tonti [25,26], as

J(X, Y ) =
1
2

∫ [
X

d2X

dτ2
+ Y

d2Y

dτ2
+ D1

(
X2 + Y 2

)

+
1
2
D3

(
X4 + Y 4

)
+ CX2Y 2

]
dτ.
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Thus, the Lagrangian L is given by

L(X, Y ) =
1
2

[
X

d2X

dτ2
+ Y

d2Y

dτ2
+ D1

[
X2 + Y 2

]

+ CX2Y 2

]
+

1
4
D3

[
X4 + Y 4

]
. (18)

As a necessary check to our calculations we use the value
of L in the Euler-Lagrange equations

∂L

∂X
− ∂

∂τ

(
∂L

∂X ′

)
+

∂2

∂τ2

(
∂L

∂X ′′

)
= 0,

∂L

∂Y
− ∂

∂τ

(
∂L

∂Y ′

)
+

∂2

∂τ2

(
∂L

∂Y ′′

)
= 0, (19)

which yields us indeed the system of equations (13).

4 The rectangular box

We adopt the following ansatz for the X and Y functions,
which is, as a matter of fact, the simplest possible choice:

X(τ) =

⎧⎪⎨
⎪⎩

2 exp(−µ(τ − 1)), τ > 1
τ + 1, |τ | < 1
0, τ < −1

(20)

Y (τ) =

⎧⎪⎨
⎪⎩

0, τ > 1
1 − τ, |τ | < 1
2 exp(µ(τ + 1)), τ < −1

. (21)

In equations (20) and (21) we have one free parameter µ.
In fact any choice of a trial function in this region will
work, provided it vanishes at infinity. We remark that if we
had allowed the values of X for τ < −1 and of Y for τ > 1
to be varied, then this would not be so. A straightforward
calculation yields the values of the Lagrangian calculated
with the trial functions (20) and (21) into the VP, we
obtain the reduced variational problem as

J(X, Y ) =
∫ −1

−∞
LGdτ +

∫ 1

−1

LGdτ +
∫ ∞

1

LGdτ. (22)

Since
∫ −1

−∞
LGdτ =

∫ ∞

1

LGdτ =
D1

µ
+

D3

µ
+ µ,

∫ 1

−1

LGdτ =
8
3
D1 +

16
5

D3 +
8
15

C,

we have

J(X, Y ) = 2µ+2
D1

µ
+2

D3

µ
+

8
3
D1 +

16
5

D3 +
8
15

C. (23)

Variation of the expression (23) in µ, leads to a quadratic
equation

µ2 = (D1 + D3),

Fig. 3. The nonlinear potential energy U(τ ) corresponding to
the parameters D1 = −1, D3 = 1.5, and C = 0.5 in the interval
[−1, 1] in equation (14).

which has the roots

µ =
√

0.5. (24)

By insertion of this value of µ into the expression (23)
yields the eventual result

J(X, Y ) = 5.22843. (25)

Figure 3 shows an example of U(τ) with the parameters
D1 = −1, D3 = 1.5, and C = 0.5 in the interval |τ | < 1.

5 The two box potential

For the next example of the application of the variational
approximation, it is natural to try a generalization of the
linear ansatz of equations (20) and (21), which allows dis-
continuity of the first derivatives of the Jost functions as:

X(τ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1 + α) exp(−µ (τ − 1)), at τ > 1
1 + ατ, at 0 < τ < 1
τ + 1, at − 1 < τ < 0
0, at τ < −1

(26)

Y (τ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, at τ > 1
1 − τ, at 0 < τ < 1
1 − ατ , at − 1 < τ < 0
(1 + α) exp(µ(τ + 1)), at τ < −1

.

(27)
Here α is a variational parameter. For |τ | > 1, the
Jost function are assumed to have the same form as in
equations (20) and (21), but, as mentioned before, the
Lagrangian given by equation (22) is insensitive to the
structure of the Jost functions outside the box. This
ansatz now contains two nontrivial variational parame-
ters µ and α. Substituting from equations (26) and (27)
into equation (22), one can find the values of the integrals
J(X, Y ) as:

J(X, Y ) =
∫ −1

−∞
LGdτ +

∫ 0

−1

LGdτ +
∫ 1

0

LGdτ +
∫ ∞

1

LGdτ.
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Since
∫ 0

−1

LGdτ =
∫ 1

0

LGdτ =
2
3
D1 +

3
10

D3 +
1
6
C

+
(

1
2
D1 +

1
2
D3 +

1
12

C

)
α

+
(

1
6
D1 +

1
2
D3 +

1
60

C

)
α2

+
1
4
D3α

3 +
1
20

D3α
4,

∫ −1

−∞
LGdτ =

∫ ∞

1

LGdτ

=
(1 + α)2(D3(1 + α)2 + 4(D1 + µ2))

16µ

we obtain

J(X, Y ) =
4
3
D1 +

3
5
D3 +

1
3
C +

(
D1 + D3 +

1
6
C

)
α

+
(

1
3
D1+D3+

1
30

C

)
α2+

1
2
D3α

3+
1
10

D3α
4

+
(1 + α)2(D3(1 + α)2 + 4(D1 + µ2))

8µ
.

with D1 = −1, D3 = 3/2 and C = 1/2, we have

J(X, Y ) = −0.27 + 0.58α + 1.18α2 + 0.75α3 + 0.15α4

+
(1 + α)2(−2.5 + 3α + 1.5α2 + 4µ2)

8µ
. (28)

Varying the expression (28) with respect to µ and α,
we get

(1 + α)2 − (1 + α)2(−2.5 + 3α + 1.5α2 + 4µ2)
8µ2

= 0,

0.058 + 2.37α + 2.25α2 + 0.6α3 +
(1 + α)2(3 + 3α)

8µ

+
(1 + α)(−2.5 + 3α + 1.5α2 + 4µ2)

4µ
= 0. (29)

The roots of this equation are

α = −1.01129− 0.065585i,

µ = 0.000277381 + 1.00078i. (30)

By substitution of the roots of α and µ into the expression
for the Lagrangian J produces analytical expressions like

J = −0.265925 + 0.00435777i. (31)

Figures 4a and 4b show an example of U(τ), with the pa-
rameters D1 = −1, D3 = 1.5, and C = 0.5 in the interval
0 < τ < 1 and −1 < τ < 0, respectively. Here we note
that the latter figures represents stable system.

(a)

(b)

Fig. 4. The nonlinear potential energy U(τ ) corresponding to
the parameters D1 = −1, D3 = 1.5, and C = 0.5 in the interval
[0, 1] with |α| = 1.01341 for (a) and in the interval [−1, 0] with
|α| = 1.01341 for (b), in equation (14).

6 General case

Qualitatively similar results for the two box potential can
be obtained on the basis of a different ansatz where we
approximate the Jost functions by polynomials of order n
instead of the piecewise linear function in equations (20)
and (21) for |τ | < 1

X(τ) =

⎧⎪⎨
⎪⎩

∑N
m=1 Cm2m exp(−µ (τ − 1)), at τ > 1∑N
m=1 Cm(1 + τ)m, at |τ | < 1

0, at τ < −1
(32)

Y (τ) =

⎧⎪⎨
⎪⎩

0, at τ > 1∑N
m=1 Cm(1 − τ)m, at |τ | < 1∑N
m=1 Cm2m exp(µ (τ + 1)) at τ < −1

(33)
where C1 = 1 and CN are the variational parameters.
Substituting equations (32) and (33) into equation (22),
one can find the values of the integrals J(X, Y )

J(X, Y ) =
∫ −1

−∞
LGdτ +

∫ 1

−1

LGdτ +
∫ ∞

1

LGdτ,
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J(X, Y ) = µ

N∑
m=1

m(m − 1)Cm

N∑
n=1

Cn2m+n−1 +
2D1

µ

(
N∑

m=1

Cm2m−1

)4

+
N∑

m=1

m(m − 1)Cm

N∑
n=1

Cn

[
2m+n−1

m + n − 1

]

+ D1

N∑
m=1

Cm

N∑
n=1

Cn

[
2m+n+1

m + n + 1

]
+ D3

N∑
m=1

Cm

N∑
n=1

Cn

N∑
i=1

Ci

N∑
j=1

Cj

[
2m+n+i+j

m + n + i + j + 1

]
+

2D3

µ

(
N∑

m=1

Cm2m−1

)2

+

⎡
⎣C

2

N∑
m=1

Cm

N∑
j=1

Cj

N∑
n=1

Cn

N∑
i=1

Ci2m+j+n+i

⎤
⎦
[
Γ (j + i + 1)Γ (m + n + 1)

Γ (n + j + m + i + 2)

]
. (34)

then we have

see equation (34) above.

Varying the expression (34) with respect to
Cm (m = 2, 3, ..., N), yields N equations in N un-
knowns. By solving these equations we get the value of
Cm (m = 2, 3, ..., N). Lastly, insertion of these values of
Cm (m = 2, 3, ..., N) into the expression (34) we get the
approximation of the Lagrangian L(X, Y ).

6.1 Example

We choose the trial function in the form

X(τ) =

⎧⎪⎨
⎪⎩

(2 + 4C2) exp(−µ (τ − 1)), at τ > 1
1 + τ + C2(1 + τ)2, at |τ | < 1
0, at τ < −1

(35)

Y (τ) =

⎧⎪⎨
⎪⎩

0, at τ > 1
1 − τ + C2(1 − τ)2, at |τ | < 1
(2 + 4C2) exp(µ(τ + 1)) at τ < −1

. (36)

Then we have

J(X, Y ) =
2(1 + 2C2)2(D1 + D3(1 + 2C2)2 + µ2)

µ

+ D1

(
8
3

+ 8C2 +
32
5

C2
2

)

+ D3

(
16
5

+
64
3

C2+
384
7

C2
2 +64C3

2 +
256
9

C4
2

)

+ C

(
8
15

+
32
15

C2 +
64
21

C2
2 +

64
35

C3
2 +

128
315

C4
2

)
.

(37)

Varying the expression (37) with respect to µ and C2, we
get

8
(
0.5 + C2

2

)

− 48(0.092 + C2)(0.91 + C2)(0.25 + C2(1 + C2))
µ2

= 0;

Fig. 5. The nonlinear potential energy U(τ ) corresponding to
the parameters D1 = −1, D3 = 1.5, and C = 0.5 in the interval
[−1, 1] with |C2| = 0.509186, in equation (14).

1
µ

(8 (0.89 + µ) (2.24 + µ) + 16C2 (0.91 + µ) (8.76 + µ)

+ 4C2
2 (48 + 42.87µ) + 3C3

2 (96 + 96.91µ) = 0. (38)

The roots of this equation are

µ = 0.0016 + 1.0031i, C2 = −0.5081− 0.033i. (39)

By substitution of the roots of C2 into the expression for
the Lagrangian L, yields the eventual results as, respec-
tively (the imaginary part is the same as in Eq. (25))

J = −0.2116 + 0.01795i. (40)

Figure 5 shows an example of U(τ), with the parame-
ters D1 = −1, D3 = 1.5, and C = 0.5 in the interval
−1 < τ < 1 with |C2| = 0.509186. A similar argument as
before applies quite well for figures which corresponds to
stable state.

7 Possible application to solar filaments

The above theory was developed in a general way, aim-
ing mainly at laboratory plasmas. However, the possible
application to the various kinds of solar filaments may be
discussed briefly. Filament bands, consisting of enchained
filaments and filament channels encircle the whole Sun,
and situated some 10 000 to 30 000 km above the solar
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surface. They are of particular relevance for the solar cy-
cle [29,30]. They correspond to a neutral field line. How-
ever, neutral means here essentially: in the line of sight.
In fact the filaments may still have a small magnetic field
(a few gauss) along their central line. Probably this small
field acts as a backbone and contributes to a fair stability,
allowing eruptions from time to time. It is felt that the
filament band as a whole corresponds somewhat to the
stagnation line considered in the present paper. However,
the filament band may evolve such that it has nearly a
vanishing field at certain places, where the instability may
set in and cause eruptions, as for the stagnation line under
study. The conservation of flux would then require some
deviation of the central field line from the plasma tube,
like a plunging in the Sun or get lost due to resistivity.

There occur circular filaments also, other than the
huge filament bands, encircling a smaller domain. Again
they are neutral along the line of sight and again there is
a small field along them: this may be smaller than in the
case of the filament bands and in fact the stability is less
good: eruptions and destruction are more frequent. Still
the approximation is expected to be modest in general.

Finally there occur more or less straight filaments of
various shapes and kinds. Their stability is still poorer
than the previous ones, so that their backbone field may
be expected to be still weaker. Often they are studied as
a current sheet or a current line. However, some of them
may be described by a neutral sheet or a stagnation line,
more or less as a limiting case. Those are in general weaker
and are sooner destroyed by instability. It is our opinion
that the theory developed above may at least be useful for
this small rather limiting group of filaments.

Recently Kikuchi [31] has considered a quadripolar
cusp geometry in relation with certain clouds and thun-
derstorms. As a cusp geometry may be reproduced in the
laboratory this may reveal a good possibility to test the
theory of the elliptic stagnation line in nature and in the
laboratory.

8 Conclusion

Wahlberg and co-authors, in a series of papers [8–12], have
shown that, near marginal stability, the NLE of the insta-
bility can be described in terms of a two-dimensional po-
tential U(X, Y ), where X and Y represent the amplitudes
of the perturbations with positive and negative helical po-
larization. They obtained the NLE of the stagnation line
instability with either positive or negative helical polar-
ization, they constructed the energy K + U = constant,
where K the kinetic energy and U the potential energy
for the specific physics at hand and they discussed the
stability from the energy integral.

We started on the other hand from the EE obtained
in [12] and the existence of a Lagrangian and an IVP in
the sense of the inverse problem of CVs through deriving
the FI corresponding to a given CNLODEs. The obtained
result turned out to be in agreement with the one as given
in [13–21]. Moreover, the first and the second variations
of the obtained FI (i.e. direct problem of the CVs) are

also carried out and led to be an extension to the re-
sults of the stability criteria as given in [12] to include
bistable systems. The latter systems may prove to be of
great interest particularly in nonlinear stability including
solitons occurring in various applications (e.g. Rayleigh
Taylor, Kelvin-Helmholtz instabilities and nonlinear evo-
lution equations).

The existence and formulation of the VPs for the
NLEE are given. The invariance identities involving the
Lagrangian L and the generators of the infinitesimal Lie
group of transformations have been utilized for writing
down their first integrals via Noether’s theorem [23,24].
We formulated the VP for the two CNLODEs describing
the NLE of stagnation line instability and we formulated
the Lagrangian L. We demonstrated the simplest example
of the application of this technique, taking the box shaped
initial pulse and an ansatz based on linear Jost functions
in the region of localization of the box. We considered in
more detail the limiting case of the above mentioned box
with the phase jump equal to π, i.e., a combination of two
boxes of opposite signs, the total area of the initial pulse
being thus zero. We developed a variational approximation
for finding the eigenvalues of this pulse, the Jost functions
being approximated by a piecewise linear ansatz, which
has two variational parameters. Next we approximated
the Jost functions by polynomials of order n instead of
a piecewise linear function.

We suggested that the theory may be useful for the
study of some solar filaments, in particular the ones that
are more or less straight and moreover fairly weak. A good
candidate to test the theory may be given by a quadripolar
cusp geometry in some clouds and thunderstorms as well
as in the laboratory.
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